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Lesson 

One 
 

Modelling, Problem-

solving and Proof 

       

Aims 
 

  The aims of this lesson are to enable you to 

 

 explore the principles of modelling and understand the 

problem-solving cycle 

 

 know what constitutes proof and present it effectively 

 

 understand what constitutes a necessary and sufficient 

condition 

 

 distinguish between proofs based on deduction, contradiction 

and exhaustion 

 

 consider what is required to disprove a conjecture 

 

 

 

Context 
 

The first lesson looks at mathematics itself, the assumptions we 

make, the skills we need to apply and the presentation of our 

work. This forms the basis of all that follows.  

  

 



 
Most of these topics are covered in GCSE textbooks but also 
look at Bowles, AQA A Level Maths: Year 1 / AS Student Book 
(OUP, ISBN-13: 978-0198412953),  Section 1.1.  
 

 

Oxford Open Learning  
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Modelling  and the Problem-solving Cycle 

 

These are general ideas that apply throughout the A-level syllabus. 

They are intended to show how Mathematics is applied to practical 

problems.  

 

The problem-solving cycle tends to involve five stages: 

 

Step 1: Problem specification 

This involves expressing a problem in a mathematical form; for 

example, by setting up equations. 

 

Step 2: Data collection 

It may be necessary to carry out an experiment, in order to obtain 

data. The data may be used to determine a suitable model. 

 

Step 3: Making assumptions  

This may include simplifying assumptions (for example, that an 

object is a particle, or that gravity is constant). 

 

Step 4: Obtaining results  

This may involve solving equations.  

 

Step 5: Interpretation 

The practical application of the results is considered. If there is not 

sufficient agreement with experimental data, then assumptions may 

need to be amended, before repeating Step 4. 

 

 

Proof  

Necessary and sufficient conditions  

Example 1 

If 𝑝 and 𝑞 are even, then 𝑝 + 𝑞 will be even. 

 

This can also be written as: 

 

𝑝 and 𝑞 are even ⇒ 𝑝 + 𝑞 is even, 

 

where the symbol ⇒ stands for “implies that”. 

 

We can also say that “𝑝 and 𝑞 being even is a sufficient condition for 

𝑝 + 𝑞 to be even”. 
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However, it is not a ‘necessary’ condition. Instead, both 𝑝 and 𝑞 

could be odd. 

 

Example 2 

If a triangle is right-angled, then 𝑎2 + 𝑏2 = 𝑐2  (where the shortest 

side is 𝑎 and the longest side is 𝑐); i.e. Pythagoras’ theorem. 

 

The ‘converse’ of Pythagoras’ theorem is also true: 

 

If 𝑎2 + 𝑏2 = 𝑐2, then the triangle is right-angled. 

 

If we denote “ triangle is right-angled” by statement A, and 𝑎2 + 𝑏2 =
𝑐2 by statement B, then 

 

𝐴 ⇒ 𝐵 (or “𝐴 is a sufficient condition for 𝐵”) 
 

and also 𝐵 ⇒ 𝐴 or 𝐴 ⇐ 𝐵 (“𝐴 is implied by 𝐵”; or “𝐴 is a necessary 

condition for 𝐵”). 
 

For this example, we can write 𝐴 ⇔ 𝐵 (“𝐴 implies and is  implied by 

𝐵”). 

 

Alternatively, we can say that  “𝐴 is a necessary and sufficient 

condition for 𝐵”. (Note however that 𝐴 ⇒ 𝐵 is the ‘sufficient’ part, 

whilst 𝐴 ⇐ 𝐵 is the ‘necessary’ part; i.e. it’s the wrong way round! It 

might be less confusing to say “𝐴 is a sufficient and necessary 

condition for 𝐵”, but this is less commonly used.) 

 

To complicate matters further, we can also say: 

 

“𝐴 is true if and only if 𝐵 is true” (often informally written as “𝐴 iff 
𝐵”). 
 

This is also the wrong way round: “𝐴 is true if 𝐵 is true” is 

equivalent to 𝐴 ⇐ 𝐵, whilst “𝐴 is true only if 𝐵 is true” is equivalent to 

𝐴 ⇒ 𝐵. 

  

Example 3 

L = individual lives in London; E = individual lives in England 

 

𝐿 ⇒ 𝐸 (but “𝐸 ⇒ 𝐿” is not true) 

 

L is a sufficient (but not necessary) condition for E 

 

E is a necessary condition for L 

 

Example 4 

R = quadratic equation has repeated roots; 
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D = discriminant is zero 

 

𝑅 ⇔ 𝐷  
 

R is true if and only if D is true 

 

R is a necessary and sufficient condition for D  

 

Proof by deduction: Example 

If 𝑎 > 1 and 𝑏 > 1, prove that 𝑎 + 𝑏 < 1 + 𝑎𝑏 

 

To prove this result, it isn’t enough to show that it is true for a large 

number of cases. 

 

A proof by deduction requires a logical argument. Here we could 

say, for example: 

 

𝑎 > 1 and 𝑏 > 1 ⇒ (𝑎 − 1)(𝑏 − 1) > 0  
⇒ 𝑎𝑏 − 𝑎 − 𝑏 + 1 > 0  
⇒ 𝑎𝑏 + 1 > 𝑎 + 𝑏 
⇒ 𝑎 + 𝑏 < 1 + 𝑎𝑏  

 

Proof by contradiction 

For the above example, we could say: 

 

Suppose that 𝑎 + 𝑏 ≥ 1 + 𝑎𝑏. 

 

Then 𝑎 − 1 ≥ 𝑏(𝑎 − 1), 
 

and hence 𝑏 ≤ 1 (since 𝑎 − 1 > 0), which contradicts the initial 

assumption. 

 

Proof by exhaustion 

In some cases, it may be sufficient (and practicable) to examine all 

the possible situations that can arise. 

 

Example 

Prove that 53 is prime. 

 

Here we need only show that 53 is not divisible by numbers up to 7. 

 

Disproving conjectures 

 

We may be asked to prove or disprove a conjecture.  

 

Suppose that our conjecture is that 𝑎 + 𝑏 ≥ 1 + 𝑎𝑏   

when 𝑎 > 1 and 𝑏 > 1. 
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Here we could consider the case where 𝑎 = 𝑏 = 10, and this is a 

counter-example that disproves the conjecture. 

 

This isn’t the only way of disproving a conjecture, but it is often the 

easiest. 

 

Presentation of Proofs 

Example 

Prove that  
1

cos2𝜃
+

1

sin2𝜃
=

1

cos2𝜃sin2𝜃
  

 

Avoid the following argument: 

 
1

cos2𝜃
+

1

sin2𝜃
=

1

cos2𝜃sin2𝜃
  

 

⇒
sin2𝜃+cos2𝜃

cos2𝜃sin2𝜃
=

1

cos2𝜃sin2𝜃
  

 

⇒ sin2𝜃 + cos2𝜃 = 1  
⇒ 1 = 1  
 

This isn’t a watertight argument. We have shown that 
1

cos2𝜃
+

1

sin2𝜃
=

1

cos2𝜃sin2𝜃
⇒ 1 = 1,   

 

but we really want to show that  

1 = 1 ⇒
1

cos2𝜃
+

1

sin2𝜃
=

1

cos2𝜃sin2𝜃
  

 

The situation could be remedied by replacing the ⇒ signs by ⇔ 

signs, but this style of proof is generally not thought to be very 

elegant. 

 

In general, to prove that 𝐴 = 𝑍, we could show that 

 

𝐴 = 𝐵 = ⋯ = 𝑍  
 

But sometimes the best sequence isn’t obvious, and it may be easier 

to prove the equivalent result that 

 

𝐴 − 𝑍 = 0  (or sometimes 
𝐴

𝑍
= 1).  

 

This is especially true if 𝐴 and 𝑍 are fractional expressions, as we 

then only need to show that the numerator of the resulting 

expression for 𝐴 − 𝑍 is zero. 

 

Now try Activity One.  This requires an understanding of 

trigonometric functions which you may find challenging if it is a 

while since your GCSE.  Don’t worry! Come back to it at a later 

point, if necessary.  
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Activity 1 
 

 

What problems are there with the following arguments? 

 


 

 

(i) Given that    0 ≤ 𝜃 < 360°, 

    sin𝜃 = tan𝜃  

⇒ sin𝜃 =
sin𝜃

cos𝜃
  

⇒ 1 =
1

cos𝜃
 

⇒ cos𝜃 = 1 

⇒ 𝜃 = 0°   

 

 

(ii)   
1

𝑥
< 2 ⇒ 1 < 2𝑥  

 

 

(iii) 𝑥 − 6 = √𝑥  

⇒ (𝑥 − 6)2 = 𝑥  

⇒ 𝑥2 − 13𝑥 + 36 = 0  
⇒ (𝑥 − 9)(𝑥 − 4) = 0  
⇒ 𝑥 = 9 𝑜𝑟 𝑥 = 4  

 

 
 

 

Activity 2 
 

 

For each of the following, which of these statements is most 

appropriate: A⇒B,   A⇐B,   A⇔B, or none of these? 

 

 


 

 
(i) 𝐴: 𝑥 = 𝑥2 ; 𝐵: 𝑥 = 1 
 

 

(ii) 𝐴: 𝑥 = 0 𝑜𝑟 𝑦 = 0;   𝐵: 𝑥𝑦 = 0 

 

 

 

(iii) 𝐴: 𝑥2 > 𝑥;   𝐵: 𝑥 > 1 
 

 

 

(iv) 𝐴: 𝑏 > 𝑎; 𝐵: 𝑏2 > 𝑎2 
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Activity 3 
 

 

Prove or disprove the following conjecture: 

 


 

 

“The number 572 can be written in the form 𝑛3 − 𝑛, for some 

positive integer 𝑛.” 

 

 

Suggested Answers to Activities 

 

Activity One 

 

(i)  It is not true that sin𝜃 =
sin𝜃

cos𝜃
 ⇒ 1 =

1

cos𝜃
, as this assumes that 

sin𝜃 ≠ 0, which need not be the case. 

Instead we can say: 

sin𝜃 = tan𝜃 ⇒ sin𝜃 =
sin𝜃

cos𝜃
 ⇒ sin𝜃 (1 −

1

cos𝜃
) = 0  

⇒ either sin𝜃 = 0 or 1 −
1

cos𝜃
= 0 (etc.) 

 

(ii)  It is only true if 𝑥 > 0. 

 

(iii) 𝑥 = 4 is a ‘spurious solution’; it doesn’t actually satisfy the original 

equation 𝑥 − 6 = √𝑥  

 

It is true that  𝑥 − 6 = √𝑥  ⇒ (𝑥 − 6)2 = 𝑥, 
 

but 𝑥 − 6 = −√𝑥  ⇒ (𝑥 − 6)2 = 𝑥  as well (and 𝑥 = 4 is a solution of this 

equation). 

 

Logically it is correct to say that the solution of 𝑥 − 6 = √𝑥 is either 

𝑥 = 9 or 𝑥 = 4, as it is indeed one of the two. 

 

Activity Two 

 

(i)  𝐴 ⇐ 𝐵 

 

(ii)  𝐴 ⇔ 𝐵  

 

(iii)  𝑥2 > 𝑥 ⇒ 𝑥2 − 𝑥 > 0 ⇒ 𝑥(𝑥 − 1) > 0   
 

⇒ either 𝑥 > 0 and 𝑥 − 1 > 0 ⇒ 𝑥 > 1  
    or 𝑥 < 0 and 𝑥 − 1 < 0 ⇒ 𝑥 < 0; 
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i.e. 𝐴 ⇒ 𝑥 > 1 𝑜𝑟 𝑥 < 0,  
so it isn’t true that 𝐴 ⇒ 𝐵; 

And 𝑥 > 1 ⇒ 𝑥2 > 𝑥 (as 𝑥 > 0, and hence both sides of the inequality 

can be multiplied by 𝑥), so that 𝐵 ⇒ 𝐴 

 

Thus the answer is: 𝐴 ⇐ 𝐵 

 

(iv)  Considering the graph of 𝑦 = 𝑥2, we see that, if 𝑎 and 𝑏 are both 

positive, then 𝐴 ⇒ 𝐵, but if 𝑎 and 𝑏 are both negative, then this isn’t 

true. (If 𝑎 < 0 and 𝑏 > 0, for example, then it depends on the relative 

sizes of |𝑎| and |𝑏|. )  
 

Also, if 𝑏2 > 𝑎2 but 𝑏 < 0 and 𝑎 > 0, for example, then 𝐵 ⇒ 𝐴 isn’t true. 

 

So none of the statements is true. 

 

Activity Three 

 

A proof by exhaustion could be considered, but the following  may 

be quicker: 

 

𝑛3 − 𝑛 = 𝑛(𝑛2 − 1) = 𝑛(𝑛 − 1)(𝑛 + 1) = (𝑛 − 1)𝑛(𝑛 + 1), and one of the 

numbers 𝑛 − 1, 𝑛 and 𝑛 + 1 must be a multiple of 3, so that 𝑛3 − 𝑛 is 

itself a multiple of 3. However, the sum of the digits making up 572 

is not a multiple of 3, and so 572 itself is not a multiple of 3. Hence 

the conjecture is false. 

 

 

 

 

 

 

 

 

 


